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Metal Forming — BSc 2025/26-1
Calculation methods



Full solution:

Establish a precise physical model for the given
forming task and apply a precise mathematical
solution.

This leads to a partial differential equation system.

Generally, such equation systems can’t be solved.

Therefore, simplifications are applied to the physical
model or the mathematical solution, or even to both.

The simplified solutions are made for the two border
strain cases: axial symmetrical and plain strain.
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Simplified solutions (in principal coordinate system):

Axial symmetrical case

The strains and also the stresses, which are
perpendicular to the axis, are identical.

Plain strain

In the second main direction, the strain is zero.
To ensure this, The second main stress can not
be zero.



General flow criterion:  G;- 63 =3 o;

I
—* 0, =(0;+0;)/2  plainstrain
$2=0
2
p=2=115

G, = G3 G, =0,

axial symmetric axial symmetric
tension ——— [ =1—" compression



Solution technics

- Equilibrium Approach
- Energy Approach
- Ofthers ...



Supposed conditions

1D stress and strain distribution

Homogeneous fields perpendicular to the
direction of change (flow)

Simplified flow conditions
Simplified geometry

Approximate boundary condifions



Material flow in conical dies

ut

Drawing (0,,<0,,,)

7y 2rf X1 = 0, 011= Ojn = 0
a / X1 = X1f, 011 = Ogut < Ofout
Reduction (0i, < ofip)
2r, Orqm-———— == 4-- - —mm O
X1 = X1f, 011= Ogyt =0
x1 =0, 011 = 0ip < Ofin
] Extrusion
X
> x]_:O, 0-11=0-in+o-wfr>0
.xl - O X1 = xlf

X1 = X1f, 011 = Oyt = 0

Oy fr Is additional stress from the
friction with the recipient wall.)



% pdA
\NTdA

g, ﬂrd@dr
T =m—=
\/g sin @
" ﬂrd@dr
sing@
TTrd@dr
tan @ Jz

"X, tan



YFE, =—d(oyr*m) —2tnrdrcBta—2pnr =20
d(oir?) + 2(tcBta + p)rdr =0

o
d(o.r%) + 2 (m\/—gca + p)r dr=0

YE =trdrdf —prdrdfctta —o,.rdrdfctta

O
p =Ttana — o, =m—§tana—ar

73
doq ar

01 — 0, = O'f = —
401+HGf r

H=m\/§(ca—tana—\/§) r =", 04 =0

__H r 4 1 __H r 4 1
O-l_ZGf 7"_be — Ur—ZGf 7"_be — —Gf

o = C1 + G, @ = 21n"%
10



Coulomb
friction

r=up

rdo, +20,dr +2pdr(1+ pcota)=0

p=rttana—o, = putana —o, —>p(l—ytana):—0'.

do, ~ 2dr
c,B-o,(1+B) r
Cr™~ a8
O = B -+ B O'y,l":l”x, O =0,
i 2B ] 2B
o, :1+B 1| L Ou|
Gy B rx Jy ,\

1+B:[1+ i ) L

tana )1 — utana




For the solution of differential equations, we assume that
the yield stress is constant during the process (by using
the average value).
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Plain strain case
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Choosing a direction characteristic of the
deformation/stress.

Defining the equilibrium of the forces acting on
an elemental slice of the body, which is
perpendicular to the chosen direction

Construction of a differential equation (1D)

Flow condition, reduction of the number of
variables

Solution of the differential equation with the
boundary conditions
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Total power of outer forces
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From the numerous kinematically possible velocity fields,
the expression above is minimal for the actual (real) one.

First term: the power of inner forces
Second term: the power of discontinuity surfaces
Third term: the power of external constraints (e.g. wire drawing)

J =W+ Wp =W,

Kinematic boundary conditions and incompressibility shall be valid
for the real velocity field.
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An application - the final shape is uncertain
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Based on the actual flow, define all components
of the velocity field.

Defining the other components based on
Incompressibility (solution of a differential
equation)

Construction of kinematically possible strain rate
fields

Power of inner forces and discontinuity surfaces

Finding the extrema of the functional.
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