

Budapest University of Technology and Economics

Metal Forming – BSc 2024/25-1 Formability

Topics

- Concept of formability
- Formability of materials:
 - Bulk forming
 - Sheet forming
- Measurement techniques

Concept of formability

The plastic deformation is limited by:

- plastic instability
- crack and fracture

Instable plastic deformation: In a certain point of the material the effect of hardening is abrogated by the softening.

The source of softening can be:

- change of geometry,
- change of the strain rate
- change of temperature.

Plastic instability

The plastic deformation is stable in a cylindrical tensile testing specimen if the force increases with increasing deformation: dF > 0

Plastic instability occurs when: dF = 0

Force at this case: $F = \overline{\sigma}A$

Limit of stability:

$$dF = d(\bar{\sigma}A) = d\bar{\sigma}A + \bar{\sigma}dA = 0$$

$$d\bar{\sigma} = -\bar{\sigma} \frac{dA}{A}$$
 where $-\frac{dA}{A} = d\bar{\varphi}$
 $\frac{d\bar{\sigma}}{d\bar{\varphi}} = \bar{\sigma} \implies$ Next slide

Plastic instability

Assuming that:
$$\bar{\sigma} = \sigma_{flow} = C\bar{\varphi}^n \implies \frac{d\bar{\sigma}}{d\bar{\varphi}} = Cn\bar{\varphi}^{n-1}$$

Limit of stability: $Cn\bar{\varphi}^{n-1} = C\bar{\varphi}^n \implies \bar{\varphi}_{critical} = n$

Plastic instability occurs when the critical strain is reached; it leads to local plastic deformation (contraction) and fracture of the sample.

Plastic instability can occur at forming of car body parts, as local thinning of the sheet.

It is beneficial if the value of *n* is higher.

The limit of deformation. The formability of the material decreases during the forming process. If the strain reaches a critical value $(\bar{\varphi}_{fracture} - strain \ at \ fracture), \ fracture \ occurs.$

The limit of the deformation depends on the local **temperature**, **strain rate** and **stress state**. It can be characterized by two quantities:

- Lode parameter (
$$\mu_{\sigma}$$
) $\mu_{\sigma} = \frac{2\sigma_2 - \sigma_1 - \sigma_3}{\sigma_1 - \sigma_3}$
- Mayer's stress state (k) $k = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\overline{\sigma}}$

Forming limit diagram

$$\overline{\varphi}_{fracture} = \left[a_2 - (a_1 - a_2)\mu_{\sigma}\right] \exp\left[b_2 - (b_1 - b_2)\mu_{\sigma}\right]k$$

The occurrence of a fracture can be analyzed by the forming limit diagrams (FLD): $\overline{a} = f(h)$

$$\overline{\boldsymbol{\varphi}}_{fracture} = f\left(k\right)$$

The forming limit diagram of bulk forming processes can be determined by conducting experiments causing different stress states (tensile, upsetting, torsion, bending etc. tests).

The **increasing temperature** shifts the curves **upwards**. The **increasing strain rate** shifts the curves **downwards**.

Bogatov fracture theory

For continuous forming

$$\Psi = \int_0^{\overline{\varphi}_f} \frac{a\overline{\varphi}^{a-1}}{\overline{\varphi}^a} d\overline{\varphi}$$

$$\bar{\varphi}_{critical} = f(k, \mu_{\sigma}, \bar{\xi}, T, \bar{x}_i)$$

For multistep forming

$$\Psi = \sum_{i=1}^{n} \int_{0}^{\overline{\varphi}_{i}} \frac{a\overline{\varphi}^{a-1}}{\overline{\varphi}^{a}} d\overline{\varphi}$$

$$a = a(k, \mu_{\sigma}, \bar{\xi}, T, \bar{x}_i)$$

 $\begin{array}{ll} \text{Mayer's stress state (k)} & \text{Lode parameter } (\mu_{\sigma}) \\ k = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\bar{\sigma}} & \mu_{\sigma} = \frac{2\sigma_2 - \sigma_1 - \sigma_3}{\sigma_1 - \sigma_3} \\ & \Psi = 1 \ \Rightarrow \ \text{fracture} \end{array}$

The formability for **sheet metal forming** techniques is characterized by the **forming limit diagram** (FLD).

Forming limit diagram (FLD)

Determination of the FLD using Nakazima test

Important quantities of sheet formability from tensile test:

- Lankford coefficient (R)
- hardening exponent (n).

The *R-value* characterises the *normal anisotropy* (perpendicular to the sheet's plane) of the sheet.

 b_o and s_o are the original, b and s the deformed dimensions. The α is the angle describing the specimen's orientation relative to the rolling direction of the sheet (see next slide).

The Lankford coefficient is the weighted average of the R_{α} values measured in the directions 0°, 45° and 90°:

$$\overline{R} = \frac{R_0 + 2R_{45} + R_{90}}{4}$$

(normal anisotropy)

From the R_{α} values the **planar anisotropy** of the sheet also can be calculated:

$$\Delta R = \left| \frac{R_0 + R_{90}}{2} - R_{45} \right|$$

(planar anisotropy)

The **hardening exponent** is the exponent of the flow curve which is also direction dependent:

$$\sigma = C \varphi^n$$

The weighted average of the **n** values measured in the directions 0, 45 and 90° :

$$\overline{n} = \frac{n_0 + 2n_{45} + n_{90}}{4}$$

From the n_{α} values the **planar anisotropy** of the hardening can also be calculated:

$$\Delta n = \left| \frac{n_0 + n_{90}}{2} - n_{45} \right|$$

Connection of R and n values to deep drawing

Example: Stress and strain state during deep drawing

Wish: High normal anisotropy with low planar one

Connection of R and n values to sheet forming technologies

R and n values for some materials

Jel	C N/mm²	n	R	\overline{C}	- n	\bar{R}
Carbon steel 0°	554,7	0,1714	1,817			
Carbon steel 45°	584	0,1619	1,067	552,8	0,164	1,59
Carbon steel 90°	488,6	0,1454	2,41			
AlMg3 0°	461.6	0.2914	0.613			
AlMg3 45°	362.75	0.2647	1.05	405.4	0.2936	0.9675
AlMg3 90°	434.4	0.2937	1.157			

Technological tests - Erichsen test

Quantity: displacement of the punch from the contact till the crack of the specimen (mm)

Technological tests – deep drawing of a cup

Starting from $D_o = 58$ mm blank diameter, by 2 mm steps till fracture (up to max. 74 mm).

Technological tests – bending

Quantity: bending angle till cracking

Thank you for your attention !